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Abstract—Ordered statistics decoding (OSD) requires Gaus-
sian elimination (GE) to obtain the systematic generator matrix
(SGM) for yielding codeword candidates, resulting in an uncom-
promised latency. Recently, low-latency OSD (LLOSD) has been
proposed for BCH codes to avoid GE by computing the SGM of a
Reed-Solomon (RS) code. Since BCH codes are binary subcodes
of the RS codes, the BCH codeword candidates can be yielded
with the RS SGM. To further facilitate the LLOSD, this paper
proposes a local constraint-based LLOSD (LC-LLOSD). In par-
ticular, the RS SGM is converted into a binary BCH parity-check
matrix, whose submatrix can be used to specify a trellis. The
serial list Viterbi algorithm (SLVA) can be applied to generate
extended test messages (TMs). Further, it can be facilitated by
incorporating the TM generation scheme of the LLOSD. Since
the SLVA generates the TMs in decreasing likelihood, the LC-
LLOSD can yield better decoding performance while re-encoding
far less TMs compared to the LLOSD. Simulation results show
the LC-LLOSD’s complexity advantage over the LLOSD.

Index Terms—BCH codes, ordered statistics decoding (OSD),
serial list Viterbi algorithm (SLVA)

I. INTRODUCTION

Good performing short-to-median length channel codes are
crucial for ultra-reliable low-latency communication (URLLC)
in future networks [1]. Recent research showed that ordered
statistics decoding (OSD) [2] of BCH codes approaches the
finite-length transmission limit [1], [3], revealing BCH codes
are one of the competed candidates for substantiating URLLC.

In OSD of binary linear block code, received symbols are
first sorted based on their reliability. Gaussian elimination
(GE) is then performed to obtain a systematic generator matrix
(SGM) of the code, whose identity submatrix is constituted
by the columns that correspond to the most reliable basis
(MRB). By flipping the hard decisions at the MRB, multiple
test messages (TMs) are generated, which are subsequently
re-encoded into codeword candidates. Note that in OSD, the
Hamming distance between the hard decisions at the MRB
and the TMs is limited to the decoding order, denoted by
τ . For a binary linear block code with dimension k and
minimum Hamming distance d, the OSD requires an order
of τ = ⌈d/4−1⌉ to approach the code’s maximum likelihood
(ML) decoding performance [2]. However, there are

∑τ
η=0

(
k
η

)
TMs to be generated and re-encoded, leading to a complexity
that grows exponentially with τ . Addressing this issue, both
skipping the unpromising TMs [4], [5] and terminating the
re-encoding early [6]–[8] can facilitate OSD. Meanwhile, the
OSD complexity can also be reduced by using the information
out of the MRB, such as the box-and-match techniques [9],
[10] and the multi-basis methods [11], [12]. Recently, the

local constraint-based OSD (LC-OSD) [13], [14] was pro-
posed, which introduces constraints for the extended TMs by
applying a parity-check submatrix of the code. The TMs can
be generated by the serial list Viterbi algorithm (SLVA) [15]
that functions over the trellis specified by the submatrix.

On the other hand, GE of the OSD is a serial process with an
uncompromised latency. There exist several approaches to al-
leviate the challenge, including pre-computing the SGMs [16],
applying a skipping rule for GE [17], and updating the basis
of an SGM [18]. Recently, in decoding BCH codes, the low-
latency OSD (LLOSD) [19] lifts the need of performing GE
through exploring the code’s algebraic property of being the
binary subcodes of Reed-Solomon (RS) codes. Consequently,
the BCH codeword candidates can be produced by SGM of
the mother RS code. Entries of the SGM can be determined in
a fully parallel manner. However, the LLOSD inherits a larger
worst-case complexity as it requires a higher decoding order
for maintaining the same decoding performance as the OSD.

In this paper, we propose the local constraint-based LLOSD
(LC-LLOSD) to facilitate the LLOSD. In particular, the RS
SGM is converted into a binary BCH parity-check matrix,
whose submatrix introduces some constraints for the (ex-
tended) TMs. With the trellis specified by the submatrix, the
SLVA can be applied to generate the TMs. The SLVA can be
simplified by using some rows of the submatrix to specify the
trellis and other rows to validate the TMs. Furthermore, it can
be facilitated by generating additional TMs through flipping
hard decisions at the extended MRB (similar to the order-1
LLOSD). Since the SLVA generates the TMs in decreasing
order of likelihood, the LC-LLOSD can yield better decoding
performance while re-encoding far less TMs compared to the
LLOSD. Simulation results show that the number of finite field
operations required by the LC-LLOSD is far fewer than the
binary operations required by the OSD and the LC-OSD. Also,
compared to the LLOSD, the LC-LLOSD requires fewer finite
field operations and offers better decoding performance.

II. PRELIMINARIES

A. System Model

Let m be an integer greater than two. Let F2 and F2m denote
the finite fields of sizes 2 and 2m, respectively. Additionally,
let (x)n denote an x-sequence (x0, x1, . . . , xn−1) and let [n]
denote an integer set {0, 1, . . . , n − 1}. C(n, k, d) denotes a
binary BCH code with length n = 2m − 1, dimension k, and
designed Hamming distance d. Its codeword c = (c)n ∈ Fn

2

is modulated using binary phase shift keying (BPSK) and

20
25

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 |

 9
79

-8
-3

31
5-

43
99

-0
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

IT
63

08
8.

20
25

.1
11

95
61

3

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 31,2025 at 07:38:33 UTC from IEEE Xplore.  Restrictions apply. 



transmitted over the additive white Gaussian noise (AWGN)
channel. The received vector is written as y = (y)n, where
its entries yj = (−1)cj + wj for j ∈ [n], and variables
wj are i.i.d. Gaussian random variables with zero mean and
variance N0/2. The log-likelihood ratio (LLR) of yj is defined
as Lj = ln

P (yj | cj=0)
P (yj | cj=1) =

4yj

N0
, where P (yj | cj = 0) and

P (yj | cj = 1) denote the channel observations of cj . The
hard-decision vector z = (z)n ∈ Fn

2 is determined by letting
its entries zj = 0 if Lj ≥ 0, and zj = 1 otherwise. The
reliability vector r = (r)n can be further obtained by letting
rj = |Lj |. A greater rj indicates the decision zj is more
reliable.

B. The LLOSD
Let C′(n, k′, d) denote an RS code defined over F2m . Given

the same designed distance d 1, binary BCH codes are binary
subcodes of the RS codes [20], i.e., C(n, k, d) = C′(n, k′, d)∩
Fn
2 . Furthermore, RS codes are maximum distance separable

(MDS) codes. It follows that k′ = n− d+ 1 and k′ > k.
In the LLOSD [19], the reliability vector r is sorted in

decreasing order, resulting in Π(r) = (rj0 , rj1 , . . . , rjn−1),
where Π represents the permutation and j0, j1, . . . , jn−1 are
the refreshed symbol indices. Let Θ denote the extended MRB
{j0, j1, . . . , jk′−1} and α denote a primitive element of F2m .
For the RS code C′(n, k′, d) with code locators 1, α, . . . , αn−1,
its SGM that is associated with Θ can be computed as

G(RS) =


Lj0(1) Lj0

(
α1

)
. . . Lj0

(
αn−1

)
Lj1(1) Lj1

(
α1

)
. . . Lj1

(
αn−1

)
...

...
. . .

...
Ljk′−1

(1) Ljk′−1

(
α1

)
. . . Ljk′−1

(
αn−1

)
 ,

(1)
where for i ∈ [k′] and p ∈ [n],

Lji(x) =
∏

s∈Θ,s̸=ji

x− αs

αji − αs
(2)

is the Lagrange interpolation polynomial w.r.t. code locator
αji . Note that G(RS) is in systematic form, since

Lji (α
p) =


1, p = ji,
0, p ∈ Θ, p ̸= ji,∏

s∈Θ(αp−αs)

(αp−αji)
∏

s∈Θ,s ̸=ji
(αji−αs)

, p ∈ [n] \Θ.

(3)
Subsequently, the columns of G(RS) are permuted according

to Π, yielding G̃(RS) = Π
(
G(RS)

)
=

[
Ik′ P̃(RS)

]
, where Ik′

is a k′×k′ identity submatrix and P̃(RS) is the RS parity sub-
matrix. We also define ỹ = (ỹ)n = Π(y), z̃ = (z̃)n = Π(z),
and r̃ = (r̃)n = Π(r). For a length-n vector, the subscripts B
and P are used to denote the first k′ and the remaining n− k′

positions, respectively. E.g., z̃ = (z̃B, z̃P). Given a test error
pattern (TEP) e ∈ Fk′

2 , an (extended) TM is generated by
flipping z̃B to z̃B + e. A (permuted) RS codeword candidate
c̃(e) =

(
c̃(e)

)
n

can be generated by re-encoding the TM as

c̃(e) = (z̃B + e)G̃(RS) =
(
z̃B + e, z̃BP̃

(RS) + eP̃(RS)
)
. (4)

1Note that for RS codes, it is the minimum Hamming distance.

If c(e) is a binary vector, it is also a valid BCH codeword
candidate. Otherwise, it should be discarded. In the order-
τ LLOSD, the TEPs are enumerated with Hamming weight
increasing from 0 to τ . In total, there are

∑τ
η=0

(
k′

η

)
TMs. The

optimal codeword candidate c̃(opt) is identified by selecting
the candidate c̃(e) that minimizes the correlation distance to
the received vector ỹ, which is defined as D

(
c̃(e), ỹ

)
=∑

j:c̃
(e)
j ̸=z̃j

r̃j . The decoding output ĉ is obtained as ĉ =

Π−1
(
c̃(opt)

)
, where Π−1 is the inverse of permutation Π.

Note that in practice, the LLOSD requires a higher order
to achieve the same decoding performance as the OSD. This
leads to a higher worst-case complexity. Addressing this issue,
the ML stopping condition [21] is used to terminate the re-
encoding process early. For a codeword candidate c̃(e), let
de denote its Hamming distance to z̃. Let the position set{
j : c̃

(e)
j = z̃j

}
be re-written as {l0, l1, . . . , ln−de−1}, where

l0 < l1 < · · · < ln−de−1. The ML stopping condition is the
follows. If

D
(
c̃(e), ỹ

)
≤

n−de−1∑
j=n−d

r̃lj , (5)

the decoding terminates and outputs Π−1
(
c̃(e)

)
.

Lemma 1. ([19]) The complexity of the LLOSD is

ΩL = O(n log n)︸ ︷︷ ︸
sorting r

+O(n(n− k′))︸ ︷︷ ︸
obtaining G(RS)

+O
(
k′(n− k′) + τk′

τ)︸ ︷︷ ︸
re-encoding the TMs

.

(6)
Despite the LLOSD requires a higher order, only very few

BCH codeword candidates are generated, as most of the re-
encoded codewords are invalid (being non-binary). Therefore,
the complexity of computing the correlation distances and
checking the ML stopping condition are minor compared to
the terms of (6). Hence, they are dropped.

III. THE LC-LLOSD

This section proposes the LC-LLOSD, which generates the
TMs by applying the SLVA [15] over the trellis that is specified
by the parity-check submatrix of the BCH code. To further
reduce the complexity, two approaches are also proposed.

A. The Proposed Decoding

After obtaining G̃(RS) =
[
Ik′ P̃(RS)

]
through (1) and

permutation Π, the RS parity-check matrix can be derived as

H̃(RS) =

[(
P̃(RS)

)T
In−k′

]
, (7)

where T denotes transposition of the matrix. Given an element
γ ∈ F2m , it can be represented by a length-m binary column
vector that is written as

(
γ(0), γ(1), . . . , γ(m−1)

)T
, such that

γ =
(
1, α, . . . , αm−1

)
·
(
γ(0), γ(1), . . . , γ(m−1)

)T
. (8)

Hence, replacing each element of H̃(RS) with a length-m
binary column yields a binary parity-check matrix of the BCH
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Fig. 1. Generating and re-encoding TMs with limited trellis states in SLVA.

code C(n, k, d) [22]. Further, its rows are permuted to form
an identity submatrix in its top-right corner as

H̃(BCH) =

[
U In−k′

V 0

]
, (9)

where 0 is an all zero matrix, U ∈ F(n−k′)×k′

2 and V ∈
F(m−1)(n−k′)×k′

2 . Note that H̃(BCH) has a rank of n− k. Any
(permuted) BCH codeword candidate c̃ = (c̃B, c̃P) should
satisfy c̃BU

T = c̃P and c̃BV
T = 0.

Thereby, to generate c̃, we can first generate the TM c̃B that
satisfies c̃BV

T = 0 and then re-encode it as c̃ =
(
c̃B, c̃BU

T
)
.

For this, the SLVA that functions over the trellis specified by
V can be applied to generate the TMs. However, since the
submatrix

[
U In−k′

]
has a rank of n− k′, V has a rank of

(n−k)−(n−k′) = k′−k. Hence, the trellis specified by V has
at most 2k

′−k states [23], leading to a high SLVA complexity.
In order to further reduce the complexity of generating the
TMs, the following two approaches are proposed.

B. Limitation of Trellis States

To limit the trellis states in the SLVA, Fig. 1 illustrates
the proposed approach for generating and re-encoding the
TMs. Let δ denote an integer not greater than k′ − k.
The matrix V is partitioned into two submatrices as V =[(
V(a)

)T (
V(b)

)T
]T

, where V(a) ∈ Fδ×k′

2 and V(b) ∈

F((m−1)(n−k′)−δ)×k′

2 . In particular, V(a) is formed by the first
δ rows of V. The remaining rows of V form V(b). Generating
the TM c̃B that satisfies c̃BV

T = 0 can be accomplished in two
steps. First, the SLVA functions over the trellis that is specified
by V(a), yielding the TM c̃B such that c̃B

(
V(a)

)T
= 0.

Secondly, the condition c̃B
(
V(b)

)T
= 0 is checked. If it is

met, c̃B will satisfy c̃BV
T = 0 and will be re-encoded into c̃.

Otherwise, it will be discarded. Note that the rank of V(a) is
at most δ, which limits the number of trellis states to at most
2δ . However, a smaller δ will lead to the generation of more
TMs. Section IV will discuss the optimized selection of δ.

Note that the aforementioned process of generating and re-
encoding the TMs can be further optimized. Let lmax denote the
maximum number of TMs to be generated. For h ∈ [lmax], let
c̃
(h)
B denote the (h+1)-th TM that is generated by the SLVA.

The TEP can also be written as e(h) = c̃
(h)
B + z̃B. Hence, the

condition c̃
(h)
B

(
V(b)

)T
= 0 is equivalent to e(h)

(
V(b)

)T
=

z̃B
(
V(b)

)T
. When validating the condition, z̃B

(
V(b)

)T
can

Algorithm 1: LC-LLOSD
Input: y, δ, lmax
Output: ĉ

1 Obtain the hard-decision vector z and the reliability
vector r based on y;

2 Sort r in decreasing order, yielding permutation Π;
3 Obtain G(RS) as in (1) and let G̃(RS) = Π(G(RS));
4 For η = 0, 1 do
5 For each TEP e ∈ Fk′

2 of weight η do
6 Generate the RS codeword c̃(e) as in (4);
7 If c̃(e) is binary and the ML stopping

condition of (5) is satisfied then
8 Return ĉ = Π−1(c̃(e));
9 Obtain H̃(BCH) as in (9);

10 Form V(a) by the frist δ rows of V;
11 Form V(b) by the remaining rows of V;
12 Initialize D

(
c̃(opt), ỹ

)
= ∞;

13 For h = 0, 1, . . . , lmax − 1 do
14 Apply the SLVA over the trellis specified by V(a)

to generate the (h+ 1)-th TM c̃
(h)
B ;

15 If c̃(h)B (V(b))T = 0 then
16 Recover c̃(h) = (c̃

(h)
B , c̃

(h)
B UT);

17 If D(c̃(h), ỹ) < D(c̃(opt), ỹ) then
18 Let c̃(opt) = c̃(h);
19 If the stopping condition of (10) is satisfied then
20 Break;
21 Return ĉ = Π−1

(
c̃(opt)

)
;

be computed once and reused. Moreover, for re-encoding c̃
(h)
B

as c̃(h) = (c̃
(h)
B , c̃

(h)
B UT), the vector c̃(h)B UT can be computed

as z̃BU
T+e(h)UT, where z̃BU

T can again be computed once.
Similar to the LLOSD, the optimal codeword candidate

c̃(opt) is identified as the one that minimizes the correlation
distance to the received vector ỹ. The decoding output is
obtained as Π−1

(
c̃(opt)

)
. Instead of the ML stopping condition

of (5), a more efficient stopping condition of [14] can be
applied to the SLVA, as the TMs are generated in decreasing
order of likelihood. That is, after obtaining the TM c̃

(h)
B , if

D
(
c̃(opt), ỹ

)
< D

(
c̃
(h)
B , ỹB

)
+

n−1∑
j=k′

r̃j
1 + exp(4r̃j/N0)

, (10)

the decoding terminates and yields Π−1
(
c̃(opt)

)
as the output.

C. Combinatorial Generation of TMs

Before applying the SLVA, additional TMs can be generated
by flipping no more than one hard decisions at the extended
MRB (like the order-1 LLOSD) and re-encoded into codeword
candidates. If the ML stopping condition of (5) is satisfied, the
decoding can be terminated without applying the SLVA. Note
that the stopping condition of (10) is not applied to these TMs,
as their likelihoods are not ensured to be in decreasing order.

When the channel condition is sufficiently good, the stop-
ping condition of (5) will be satisfied very frequently, leading
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Fig. 2. FER of the LC-LLOSD with different values of δ and lmax in decoding
the (63, 45, 7) BCH code at the SNR of 5 dB.

to the removal of running the SLVA and the significantly
reduced LC-LLOSD complexity. Algorithm 1 summarizes the
proposed LC-LLOSD by incorporating the complexity reduc-
ing techniques mentioned in the above two subsections.

IV. COMPLEXITY ANALYSIS

Note that the rank of V(b) is approximately k′ − k − δ.
Therefore, the condition c̃B

(
V(b)

)T
= 0 is satisfied with

a probability of approximately 1/2k
′−k−δ . To maintain the

LC-LLOSD performance, the number of TMs that satisfy the
condition c̃B

(
V(b)

)T
= 0 should be preserved. Hence, lmax

should be set proportional to 2k
′−k−δ .

As an example, Fig. 2 shows the frame error rate (FER)
performance of the LC-LLOSD with different values of δ and
lmax in decoding the (63, 45, 7) BCH code at the signal-to-
noise ratio (SNR) of 5 dB. For this code, k′ − k = 12. As
shown, lmax should be set proportional to 2k

′−k−δ to maintain
the performance. This is because a larger number of trellis
states leads to a more selective generation of the TMs, thereby
reducing the list size. Hence, adjusting δ and lmax trade-offs the
decoding performance and complexity. The following lemma
characterizes the LC-LLOSD complexity, which will show that
δ = (k′ − k)/2 offers a good trade-off for the decoding.

Lemma 2. The complexity of the LC-LLOSD is

ΩC =O(n log n)︸ ︷︷ ︸
sortingr

+O(n(n− k′))︸ ︷︷ ︸
obtaining G(RS)

+O
(
2δk′ + lmaxk

′)︸ ︷︷ ︸
applying the SLVA

+O
(
lmaxk

′ +
(
lmax/2

k′−k−δ
)
k′(n− k′) log n

)
︸ ︷︷ ︸

checking and re-encoding the TMs generated by the SLVA

.
(11)

Proof: The complexity of sorting r and generating G(RS)

follows from Lemma 1. For the TMs generated by flipping
no more than one hard decision at the extended MRB, re-
encoding them has a complexity of O(k′(n − k′)). This
complexity is not expressed in (11) since generating G(RS)

has a complexity of O(n(n − k′)). Also, the complexity of
transforming G̃(RS) into H̃(BCH) is omitted, as it involves
no computation. The complexity of computing the correlation
distances and checking the stopping condition of (10) is also
omitted in (11), as these are part of the SLVA complexity.

Since the trellis specified by V(a) has at most 2δ states,
the SLVA generates the first TM c̃

(0)
B with a complexity of

O
(
2δk′

)
. For h > 0, the SLVA generates each TM c̃

(h)
B

with a further complexity of O(k′). Hence, the SLVA has a
complexity of O

(
2δk′ + lmaxk

′) [13], [15].
After the SLVA generates the (h + 1)-th TM c̃

(h)
B , the

condition c̃
(h)
B

(
V(b)

)T
= 0 is then checked. Note that the

check can be terminated once a parity-check equation specified
by a row of V(b) detects that c̃

(h)
B violates it. Therefore,

if the TM does not satisfy the condition, the check has a
complexity of O(k′). Otherwise, the check has a complexity
of O(mk′(n − k′)), and re-encoding the TM c̃

(h)
B through

c̃(h) =
(
c̃
(h)
B , c̃

(h)
B UT

)
has a complexity of O(k′(n − k′)).

Note that among the lmax TMs generated by the SLVA,
only approximately lmax/2

k′−k−δ TMs satisfy the condition
and require re-encoding. Therefore, checking and re-encoding
all the TMs generated by the SLVA has a complexity of
O
(
lmaxk

′ +
(
lmax/2

k′−k−δ
)
k′(n− k′) log n

)
. ■

Note that for the TMs generated by the SLVA, the process
of checking and re-encoding can be simplified by utilizing
the TEP e(h) as outlined in Section III-B. Since the SLVA
generates the TMs in decreasing likelihood order and can
be efficiently terminated using the stopping condition of
(10), it can be assumed that the TEP e(h) has a Hamming
weight of at most 2d = 2(n − k′ + 1). The complexity
of checking and re-encoding the TMs can be reduced to
O
(
lmax(n− k′) +

(
lmax/2

k′−k−δ
)
(n− k′)2 log n

)
2.

Since lmax is set proportional to 2k
′−k−δ , the asymptotic

complexity of the SLVA is bounded below by O
(
2(k

′−k)/2k′
)

when δ = (k′ − k)/2. However, the complexity of the SLVA
grows exponentially with k′− k. It dominates the overall LC-
LLOSD complexity. Compared to the LLOSD complexity that
is characterized in (6), the LC-LLOSD has two additional
terms associated with the SLVA. Nevertheless, our simulation
results will show that the LC-LLOSD can significantly reduce
both the number of TMs and the complexity of the LLOSD.

V. SIMULATION RESULTS

This section shows the performance and complexity of
different decoding algorithms, including the OSD [2], the LC-
OSD [13], the LLOSD [19], and the proposed LC-LLOSD.
For simplicity, let OSD (τ) and LLOSD (τ) denote the order-τ
OSD and order-τ LLOSD, respectively. Let LC-OSD (δ, lmax)
denote the LC-OSD with constraints δ and a maximum list size
lmax. Similarly, let LC-LLOSD (δ, lmax) denote the parameter-
ized LC-LLOSD. To ensure fairness, the stopping conditions
of (5) and (10) are applied to the OSD and the LC-OSD,
respectively. The ML decoding performance is from [24].

Fig. 3 shows the FER performance of different algorithms
in decoding the (63, 45, 7) BCH code. It can be seen that the
LC-LLOSD performs almost the same as the LC-OSD and

2Based on the Plotkin bound, BCH codes with a dimension k ≥ m satisfy
d ≤ 2m−1. Their corresponding mother RS codes satisfy k′ > n/2.
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Fig. 3. FER of different algorithms in decoding the (63, 45, 7) BCH code.

TABLE I
COMPLEXITY OF ALGORITHMS IN DECODING THE (63, 45, 7) BCH CODE

A. Average number of generated TMs.
SNR OSD LC-OSD LLOSD LC-LLOSD
4 dB 8.4 × 100 1.6 × 100 5.0 × 103 1.2 × 101

5 dB 2.2 × 100 1.4 × 100 8.3 × 102 3.1 × 100

6 dB 1.1 × 100 1.3 × 100 4.1 × 101 1.2 × 100

B. Average number of required operations and latency at the SNR of 5 dB.
OSD LC-OSD LLOSD LC-LLOSD

Oper. F2 6.7 × 103 1.4 × 104 0 3.6 × 102

Type FLOPs 5.0 × 102 2.1 × 103 4.9 × 102 6.5 × 102

F64 0 0 4.5 × 103 2.0 × 103

Latency (µs) 24.4 79.2 52.2 15.6

it approaches the ML decoding performance. At the FER of
10−4, the LC-LLOSD achieves a performance gain of 0.2 dB
and 0.1 dB over the OSD and the LLOSD, respectively. Note
that we select δ = (k′ − k)/2 = 6 and lmax = 2δ+1 = 128 to
contain the LC-LLOSD complexity. Compared with the LC-
OSD, despite the LC-LLOSD introduces two more constraints
for the TMs in applying the SLVA (with the parameter δ
being greater by two), it still requires a larger lmax. This is
because, in the LC-LLOSD, the TM c̃

(h)
B generated by the

SLVA must satisfy the condition c̃
(h)
B

(
V(b)

)T
= 0 in order to

be re-encoded, which results in some TMs being discarded.
Table I shows the complexity of these algorithms in de-

coding the (63, 45, 7) BCH code with parameters mentioned
above. In particular, Table I-A shows the average number
of generated TMs. Thanks to the SLVA and the stopping
condition of (10), the LC-LLOSD generates significantly fewer
TMs than the LLOSD. Compared with the OSD and the LC-
OSD, the LC-LLOSD generates more TMs. This comes from
the LC-LLOSD also generating the TMs by flipping hard
decisions at the extended MRB. Table I-B shows the average
number of required operations and latency at the SNR of 5
dB. It shows the LC-LLOSD significantly reduces the F64

operations over the LLOSD. Meanwhile, the number of F64

operations required by the LLOSD and LC-LLOSD is smaller
than that of binary operations required by the OSD and the
LC-OSD. For the LC-LLOSD, the required number of floating
point operations (FLOPs) and binary operations are minor in
comparison with the number of the F64 operations. This is
because in the shown SNR regime, the SLVA is applied with
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Fig. 4. FER of different algorithms in decoding the (127, 99, 9) BCH code.

TABLE II
COMPLEXITY OF ALGORITHMS IN DECODING THE (127,99,9) BCH CODE

A. Average number of generated TMs.
SNR OSD LC-OSD LLOSD LC-LLOSD
3 dB 3.6 × 103 5.1 × 100 6.1 × 106 1.5 × 102

4 dB 1.5 × 103 1.9 × 100 2.5 × 106 4.6 × 101

5 dB 2.2 × 102 1.4 × 100 3.6 × 105 8.4 × 100

B. Average number of required operations and latency at the SNR of 5 dB.
OSD LC-OSD LLOSD LC-LLOSD

Oper. F2 4.9 × 104 8.9 × 104 0 1.4 × 104

Type FLOPs 4.6 × 103 1.1 × 104 1.1 × 103 5.6 × 103

F128 0 0 1.5 × 106 5.3 × 103

Latency (µs) 164.1 224.8 33423.0 108.9

a very low probability. As a result, the LC-LLOSD complexity
mainly arises from obtaining G(RS) and re-encoding the first
TM z̃B. The latency results are measured using simulation
time on an Intel Core i5-8400 CPU. In the LLOSD and the
LC-LLOSD, we assume that G(RS) is generated in parallel.
As shown, the LC-LLOSD inherits an advantage in decoding
latency, since it avoids GE and generates only a few TMs.

Fig. 4 and Table II further show the FER performance and
the complexity, respectively, of different algorithms in decod-
ing the (127, 99, 9) BCH code. For this code, k′ − k = 20.
The parameters of the LC-LLOSD are δ = 9 and lmax = 1024.
Fig. 4 shows that the LC-LLOSD approaches the ML decoding
performance and achieves a 0.3 dB gain over the LLOSD at
the FER of 10−5. Table II-A illustrates that the LC-LLOSD
generates far fewer TMs than both the OSD and the LLOSD.
Table II-B shows that the numbers of binary operations,
FLOPs, and F128 operations required by the LC-LLOSD are of
the same order of magnitude, indicating that the complexity of
the SLVA is comparable to that of generating G(RS). Compared
to the LLOSD, the number of F128 operations required by the
LC-LLOSD is fewer by two orders of magnitude. Also, the
latency of the LC-LLOSD is much lower. The LC-LLOSD
decodes longer BCH codes more effectively than the LLOSD.
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